Universal moduli spaces of surfaces with flat bundles and cobordism theory

نویسندگان

  • Ralph L. Cohen
  • Søren Galatius
  • Mark Hovey
چکیده

For a compact, connected Lie group G, we study the moduli of pairs (Σ,E), where Σ is a genus g Riemann surface and E →Σ is a flat G-bundle. Varying both the Riemann surface Σ and the flat bundle leads to a moduli space Mg , parametrizing families Riemann surfaces with flat G-bundles. We show that there is a stable range in which the homology of Mg is independent of g. The stable range depends on the genus of the surface. We then identify the homology of this moduli space in the stable range, in terms of the homology of an explicit infinite loop space. Rationally, the stable cohomology of this moduli space is generated by the Mumford–Morita–Miller κ-classes, and the ring of characteristic classes of principal G-bundles, H∗(BG). Equivalently, our theorem calculates the homology of the moduli space of semi-stable holomorphic bundles on Riemann surfaces. We then identify the homotopy type of the category of one-manifolds and surface cobordisms, each equipped with a flat G-bundle. Our methods combine the classical techniques of Atiyah and Bott, with the new techniques coming out of Madsen and Weiss’s proof of Mumford’s conjecture on the stable cohomology of the moduli space of Riemann surfaces. © 2009 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal moduli spaces of surfaces with flat connections and cobordism theory

Given a semisimple, compact, connected Lie group G with complexification Gc, we show there is a stable range in the homotopy type of the universal moduli space of flat connections on a principal G-bundle on a closed Riemann surface, and equivalently, the universal moduli space of semistable holomorphic Gc-bundles. The stable range depends on the genus of the surface. We then identify the homolo...

متن کامل

MICHÈLE VERGNE Multiple Bernoulli Series and Volumes of Moduli Spaces of Flat Bundles over Surfaces

Using Szenes formula for multiple Bernoulli series, we explain how to compute Witten series associated to classical Lie algebras. Particular instances of these series compute volumes of moduli spaces of flat bundles over surfaces, and also multiple zeta values.

متن کامل

Multiple Bernoulli series and volumes of moduli spaces of flat bundles over surfaces

Using Szenes formula for multiple Bernoulli series, we explain how to compute Witten series associated to classical Lie algebras. Particular instances of these series compute volumes of moduli spaces of flat bundles over surfaces, and also certain multiple zeta values.

متن کامل

Geometric cobordism categories

In this paper we study cobordism categories consisting of manifolds which are endowed with geometric structure. Examples of such geometric structures include symplectic structures, flat connections on principal bundles, and complex structures along with a holomorphic map to a target complex manifold. A general notion of “geometric structure” is defined using sheaf theoretic constructions. Our m...

متن کامل

Symplectic Geometry on Moduli Spaces of Holomorphic Bundles over Complex Surfaces

We give a comparative description of the Poisson structures on the moduli spaces of flat connections on real surfaces and holomorphic Poisson structures on the moduli spaces of holomorphic bundles on complex surfaces. The symplectic leaves of the latter are classified by restrictions of the bundles to certain divisors. This can be regarded as fixing a “complex analogue of the holonomy” of a con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009